Modelling financial time series with switching state space models
نویسندگان
چکیده
The deeciencies of stationary models applied to nancial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for nancial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state space model (SSSM) and discuss the practical details of training such models with a variational EM algorithm due to Ghahramani and Hinton, 1998]. The performance of the SSSM is evaluated on several nancial data sets and it is shown to improve on a number of existing benchmark methods.
منابع مشابه
Modelling Financial Time Series with Switching State Space Models - Computational Intelligence for Financial Engineering, 1999. (CIFEr). Proceedings of the IEEE/IAFE
The deficiencies of stationary models applied to financial time series are well documented. A special form of non-stationarity, where the underlying generator switches between (approximately) stationary regimes, seems particularly appropriate for financial markets. We use a dynamic switching (modelled by a hidden Markov model) combined with a linear dynamical system in a hybrid switching state ...
متن کاملEstimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models
A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...
متن کاملSTAT 4 : Advanced Time
4. Course Outline: (i) Review of Linear ARMA/ARIMA Time Series Models and their Properties. (ii) An Introduction to Spectral Analysis of Time Series. (iii) Fractional Differencing and Long Memory Time Series Modelling. (iv) Generalized Fractional Processes. Gegenbaur Processes. (v) Topics from Financial Time Series/Econometrics: ARCH and GARCH Models. (vi ) Time Series Modelling of Durations: A...
متن کاملBayesian Time Series Analysis
This article describes the use of Bayesian methods in the statistical analysis of time series. The use of Markov chain Monte Carlo methods has made even the more complex time series models amenable to Bayesian analysis. Models discussed in some detail are ARIMA models and their fractionally integrated counterparts, state-space models, Markov switching and mixture models, and models allowing for...
متن کاملBayesian Time Series Analysis
This article describes the use of Bayesian methods in the statistical analysis of time series. The use of Markov chain Monte Carlo methods has made even the more complex time series models amenable to Bayesian analysis. Models discussed in some detail are ARIMA models and their fractionally integrated counterparts, state-space models, Markov switching and mixture models, and models allowing for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999